R and RStudio installation

R, RStudio, RStudio online ——- Connecting RStudio and GitHub, R-bloggers

Course Info

Course descriptionabout Final exam projectsStudents & grades

1. Introduction to the course. Introduction to R. Types of data.

2. Descriptive statistics A. Confidence intervals. P-values

3. Data manipulation and visualization.

4. Classical statistical tests: continuos data. T-tests. Mann-Whitney U-test.

5. Classical statistical tests: categorial data. Binomial test. Chi-squared test. Fisher exact test. Effect size. Correlations. ANOVA.

6. Bi-variate regression.

7. Linear regressions

8. Multivariate linear regressions, dummy variables, ANOVA

9. Linear mixed-effects models.

10. Binary logistic regressions

11. Decision trees. Decision forests

12. Clusterization

13. Principal component analysis, t-SNE, Simple and Multiple correspondence analysis

15. Time series data (TL)

15. Empirical Bayes (CL)

16. Statistics for Hackers (CL)

Exam: Project presentation

Textbooks

see also our Course Program

R Markdown





© О. Ляшевская, И. Щуров, Г. Мороз, code on GitHub